Structured outputs · Ollama Blog
Ollama now supports structured outputs making it possible to constrain a model’s output to a specific format defined by a JSON schema. The Ollama Python and JavaScript libraries have been updated to support structured outputs.
Use cases for structured outputs include:
- Parsing data from documents
- Extracting data from images
- Structuring all language model responses
- More reliability and consistency than JSON mode
Get started
Download the latest version of Ollama
Upgrade to the latest version of the Ollama Python or JavaScript library:
Python
pip install -U ollama
JavaScript
npm i ollama
To pass structured outputs to the model, the format
parameter can be used in the cURL request or the format
parameter in the Python or JavaScript libraries.
cURL
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "llama3.1",
"messages": [{"role": "user", "content": "Tell me about Canada."}],
"stream": false,
"format": {
"type": "object",
"properties": {
"name": {
"type": "string"
},
"capital": {
"type": "string"
},
"languages": {
"type": "array",
"items": {
"type": "string"
}
}
},
"required": [
"name",
"capital",
"languages"
]
}
}'
Output
The response is returned in the format defined by the JSON schema in the request.
{
"capital": "Ottawa",
"languages": [
"English",
"French"
],
"name": "Canada"
}
Python
Using the Ollama Python library, pass in the schema as a JSON object to the format
parameter as either dict
or use Pydantic (recommended) to serialize the schema using model_json_schema()
.
from ollama import chat
from pydantic import BaseModel
class Country(BaseModel):
name: str
capital: str
languages: list[str]
response = chat(
messages=[
{
'role': 'user',
'content': 'Tell me about Canada.',
}
],
model="llama3.1",
format=Country.model_json_schema(),
)
country = Country.model_validate_json(response.message.content)
print(country)
Output
name="Canada" capital="Ottawa" languages=['English', 'French']
JavaScript
Using the Ollama JavaScript library, pass in the schema as a JSON object to the format
parameter as either object
or use Zod (recommended) to serialize the schema using zodToJsonSchema()
.
import ollama from 'ollama';
import { z } from 'zod';
import { zodToJsonSchema } from 'zod-to-json-schema';
const Country = z.object({
name: z.string(),
capital: z.string(),
languages: z.array(z.string()),
});
const response = await ollama.chat({
model: 'llama3.1',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: zodToJsonSchema(Country),
});
const country = Country.parse(JSON.parse(response.message.content));
console.log(country);
Output
{
name: "Canada",
capital: "Ottawa",
languages: [ "English", "French" ],
}
Examples
Data extraction
To extract structured data from text, define a schema to represent information. The model then extracts the information and returns the data in the defined schema as JSON:
from ollama import chat
from pydantic import BaseModel
class Pet(BaseModel):
name: str
animal: str
age: int
color: str | None
favorite_toy: str | None
class PetList(BaseModel):
pets: list[Pet]
response = chat(
messages=[
{
'role': 'user',
'content': '''
I have two pets.
A cat named Luna who is 5 years old and loves playing with yarn. She has grey fur.
I also have a 2 year old black cat named Loki who loves tennis balls.
''',
}
],
model="llama3.1",
format=PetList.model_json_schema(),
)
pets = PetList.model_validate_json(response.message.content)
print(pets)
Example output
pets=[
Pet(name="Luna", animal="cat", age=5, color="grey", favorite_toy='yarn'),
Pet(name="Loki", animal="cat", age=2, color="black", favorite_toy='tennis balls')
]
Image description
Structured outputs can also be used with vision models. For example, the following code uses llama3.2-vision
to describe the following image and returns a structured output:
from ollama import chat
from pydantic import BaseModel
class Object(BaseModel):
name: str
confidence: float
attributes: str
class ImageDescription(BaseModel):
summary: str
objects: List[Object]
scene: str
colors: List[str]
time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
setting: Literal['Indoor', 'Outdoor', 'Unknown']
text_content: Optional[str] = None
path="path/to/image.jpg"
response = chat(
model="llama3.2-vision",
format=ImageDescription.model_json_schema(), # Pass in the schema for the response
messages=[
{
'role': 'user',
'content': 'Analyze this image and describe what you see, including any objects, the scene, colors and any text you can detect.',
'images': [path],
},
],
options={'temperature': 0}, # Set temperature to 0 for more deterministic output
)
image_description = ImageDescription.model_validate_json(response.message.content)
print(image_description)
Example output
summary='A palm tree on a sandy beach with blue water and sky.'
objects=[
Object(name="tree", confidence=0.9, attributes="palm tree"),
Object(name="beach", confidence=1.0, attributes="sand")
],
scene="beach",
colors=['blue', 'green', 'white'],
time_of_day='Afternoon'
setting='Outdoor'
text_content=None
OpenAI compatibility
from openai import OpenAI
import openai
from pydantic import BaseModel
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
class Pet(BaseModel):
name: str
animal: str
age: int
color: str | None
favorite_toy: str | None
class PetList(BaseModel):
pets: list[Pet]
try:
completion = client.beta.chat.completions.parse(
temperature=0,
model="llama3.1:8b",
messages=[
{"role": "user", "content": '''
I have two pets.
A cat named Luna who is 5 years old and loves playing with yarn. She has grey fur.
I also have a 2 year old black cat named Loki who loves tennis balls.
'''}
],
response_format=PetList,
)
pet_response = completion.choices[0].message
if pet_response.parsed:
print(pet_response.parsed)
elif pet_response.refusal:
print(pet_response.refusal)
except Exception as e:
if type(e) == openai.LengthFinishReasonError:
print("Too many tokens: ", e)
pass
else:
print(e)
pass
Tips
For reliable use of structured outputs, consider to:
- Use Pydantic (Python) or Zod (JavaScript) to define the schema for the response
- Add “return as JSON” to the prompt to help the model understand the request
- Set the temperature to 0 for more deterministic output
What’s next?
- Exposing logits for controlled generation
- Performance and accuracy improvements for structured outputs
- GPU acceleration for sampling
- Additional format support beyond JSON schema